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Abstract—Millimeter wave (mmWave) is a key technology to
support high data rate demands for 5G applications. Highly
directional transmissions are crucial at these frequencies to
compensate for high isotropic pathloss. This reliance on di-
rectional beamforming, however, makes the cell discovery (cell
search) challenging since both base station (gNB) and user
equipment (UE) jointly perform a search over angular space
to locate potential beams to initiate communication. In the cell
discovery phase, sequential beam sweeping is performed through
the angular coverage region in order to transmit synchronization
signals. The sweeping pattern can either be a linear rotation
or a hopping pattern that makes use of additional information.
This paper compares recently proposed beam sweeping pattern
prediction, based on the dynamic distribution of user traffic,
using a form of recurrent neural networks (RNNs) called a Gated
Recurrent Unit (GRU), and random starting point sweeping to
measure the synchronization delay distribution. Results show
that user spatial distribution and their approximate location
(direction) can be accurately predicted based on Call Detail
Records (CDRs) data using a GRU, which is then used to calculate
the sweeping pattern in the angular domain during cell search.
Moreover, the proposed beam sweeping pattern prediction enable
the UE to initially assess the gNB in approximately 0.41 of
a complete scanning cycle with probability 0.9 in a sparsely
distributed UE scenario.

Index Terms—mmWave, initial access, CDR, machine learning,
RNN, Gated Recurrent Unit.

I. INTRODUCTION

M
ilimeter wave (mmWave) is an enabling technology

for 5G high data rate use cases due to the available

bandwidth at these frequencies. However, the initial access

in mmWave cellular systems is challenging compare to the

current LTE system for two reasons. First, due to the high

isotropic path-loss the mmWave communications requires high

directional transmission. But the UE and gNB do not know in

which directions to transmit (receive) during the initial access.

Second, since the mmWave link is vulnerable to blocking

and beam misalignment, more frequent initial access needs to

be performed [1], [2], [3], [4]. The IEEE 802.11ad standard

adopted two levels initial beamforming training for 60 GHz,

where a coarser sector level sweep phase is followed by an

optional beam refinement phase [5].

Recently context information (e.g., vehicle’s position) and

past beam measurements stored in a database (maintained

in the roadside unit in vehicular communications) has been

used as a hint to determine potential beam pairs [6]. Gener-

ally speaking, the initial access procedure can be improved

by richer information, e.g., terminal positions, channel gain

predictions, user spatial distribution, antenna configurations

successfully used in previous accesses, and so on.

The contributions of this paper are: (1) leveraging intelli-

gence from call detail records (CDR) data to rapidly determine

the sweeping direction pattern during the cell discovery phase

in mmWave cellular system, (2) using Recurrent Neural Net-

works (RNN) to predict the evolution of the CDR pattern and

(3) a comparison of beam sweeping pattern prediction with

a random starting point sweeping in terms of synchronization

delay.

The remainder of this paper is organized as follows. Section

II discusses the initial access in standalone 5G NR, Section

III presents initial access based on a machine learning ap-

proach using Recurrent Neural Networks (RNNs), Section

IV discusses the synchronization delay analysis, Section V

results are discussed and in Section VI the paper discussed

the conclusions.

II. INITIAL ACCESS IN 5G NEW RADIO

The initial access in 5G New Radio (NR) standalone

millimeter wave is a time-consuming search to determine

suitable directions of transmission and reception. The overall

idea of the envisioned mmWave initial access procedure is

summarized in Fig.1 (a) [7]. The problem of interest in this

paper is the cell discovery. In the cell discovery phase, one

approach is sequential beam sweeping by the base station

that requires a brute force search through many beam-pair

combinations between the user equipment (UE) and the gNB

(5G base station) to find the optimum beam-pair (i.e. the one

with the highest reference received signal power (RSRP) level

as shown in Fig.1 (b). The sequential search may result in a

large access delay and low initial access efficiency. This paper

proposes beam sweeping pattern prediction to determine the

beam hopping sequence, based on the dynamic distribution

of user traffic (i.e., CDRs). This is done by using a form

of recurrent neural networks (RNNs) called Gated Recurrent978-1-5386-7693-6/18/$31.00 ©2018 IEEE
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Fig. 1: (a) The envisioned procedure for mm-wave initial access. (b) Beam
sweeping during initial access

Unit (GRU). It is worth mentioning that a UE does not only

need to carry out cell search at power-up, but to support

mobility. It also needs to continuously search for, synchronize

to neighboring cells and estimate their reception quality. The

reception quality of the neighboring cells, in relation to the

reception quality of the current cell, is then evaluated to

determine if a handover (for devices in RRC CONNECTED)

or cell reselection (for devices in RRC IDLE) should be carried

out [8].

The standalone mmWave system is subject to significant

coverage issues if beam sweeping (directional transmission)

is not applied during cell search. In the current LTE system,

the initial access is performed on omnidirectional channels,

whereas the beamforming transmission is performed after

establishing the physical link [9]. On another hand, to cope

with the converge issue resulting from the increased isotropic

path loss in mmWave frequencies, in 5G standalone mmWave

cellular systems, the initial access must be performed on

directional channels [10]. In the ongoing 5G NR standalone

mmWave standards meeting, the so-called synchronization

signal block (SSB) was introduced, which comprises a primary

synchronization signal (PSS), a secondary synchronization

signal (SSS), and a physical broadcast channel (PBCH). The

synchronization signal burst was allocated 250 microseconds,

which was further divided into 14 SSB as illustrated in Fig. 2.

The gNB may sweep 14 different directions (per antenna port)

for the sync transmission. The exact choice of the sweeping

pattern can be left to the cells; this pattern should occur

periodically and the maximum periodicity must be known by

the UE [10].
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Fig. 2: Resources allocated to sync transmission

III. INITIAL ACCESS MACHINE LEARNING APPROACH

To ensure that users can be quickly accessed, a form of

machine learning can be used to optimize the sweeping pattern

of the gNB, including beam direction and sweeping order

according to the predicted user’s spatial distribution from users

historical data (e.g. delay access, access success rate and beam

direction etc.). The focus of this paper is the sweeping pattern

prediction in the cell discovery phase. The proposed approach

leverages intelligence from the CDRs data collected from

Milan City network, provided by Telcom Italia as part of their

Big Data challenge [11].

A. Dataset

The data used in this paper is in form of CDRs of Internet

activity, calling and text messages. The dataset measures the

level of interaction of the users and the cellular network

by temporally aggregating CDRs in timeslots of 10 minutes.

The datasets provide spatial information about the each CDR

by using the Milano Grid [12] CDR data, which contains

numbered squares (square ID) that are overlaid over Milan

city. The data lakes the coordinates of each CDR and only

provides the square ID. Therefore to achieve the objective of

the proposed data-driven sweeping pattern, we assume that

a cell is made of four squares in the Milano grid and each

square represents a sector (direction). In order to determine

the users activity in each sector, we count the number of

CDRs that was recorded in the same timestamps in a given

sector. TABLE I presents sample data points, which show the

number of CDRs on ”2013-11-17” at five timestamps in four

sectors denoted by A, B, C and D. In this paper the pseudo-

omni beam transmission is adapted i.e. the gNB transmits the

synchronization signal for a longer duration with a pseudo-

omni beams. The hopping pattern of the beam sweeping is

determined based on time series prediction using a Neural

Networks as discussed in III-B.



TABLE I: Number of CDRs per sector

Time A B C D

2013-11-17 22:10:00 3 3 3 5
2013-11-17 22:20:00 2 2 2 2
2013-11-17 22:30:00 3 2 1 2
2013-11-17 22:40:00 2 3 3 4
2013-11-17 22:50:00 3 1 2 5

B. Sweeping pattern using time series prediction

The number of CDRs in each sector is a time series as

shown in TABLE I. To determine the sweeping pattern, or

order, a recurrent neural network (RNN) is used to predict the

number of CDRs in all sectors, which is used to prioritize

the sweeping direction accordingly. The RNN architecture is

able to captures dependencies at different time scales. A Gated

Recurrent Unit (GRU) Neural Network with 512 units is used

to predict the number of CDRs in all sectors. The GRU neural

net was first introduced by Cho et al. [13] for a statistical

machine translation task. Fig. 3 illustrates the architecture of

a GRU cell. A GRU made of two gates. The first is the update

gate, which controls how much of the current cell content

should be updated with the new candidate state. The second

is the reset gate, which rests the memory of the cell if it is

closed i.e. the unit acts as if the next processed input was the

first in the sequence. The state equations of the GRU are [14]

reset gate : r[t] = σ(Wrh[t− 1] +Rrx[t] + br),

current state : h′[t] = h[t− 1]⊙ r[t],

candidate state : z[t] = g(Wzh
′[t− 1] +Rzx[t] + bz),

update gate : u[t] = σ(Wuh[t− 1] +Rux[t] + bu),

new state : h[t] = (1− u[t])⊙ h[t− 1] + u[t]⊙ z[t].
(1)

where, g(·) is non-linear function usually implemented by a

hyperbolic tangent, σ is the logistic sigmoid1, Wr,Wz,Wu

are rectangular weight matrices, that are applied to the in-

put x[t] (Number of CDRs in all sectors), Rr,Rz,Ru are

square matrices that define the weights of the recurrent

connections,br,bz,bu are the bias vectors and ⊙ is the

Hadamard product.

After building GRU model, a Mean Squared Error (MSE)

used as the loss-function to be minimized, which measures

how closely the model’s output matches the true output signals.

IV. SYNCHRONIZATION DELAY ANALYSIS

In this section, the delay analysis of two approaches is com-

pared to quantify how much faster the data-driven approach is

than the random starting point scheme. In both schemes, we

assume that the gNB sweeps through L possible directions.

We will call each such cycle of L transmissions a scanning

cycle. Since the transmission period is T seconds, each scan

cycle will take LT seconds as depicted in Fig. 4.

The synchronization delay is the time it takes the UE

to detect the presence of the synchronization signal in the

1The logistic sigmoid is defined as σ =
1
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Fig. 3: A recurrent unit in the GRU architecture. Dark gray circles with a solid
line are the variables whose content is exchanged with the input and output of
the network. Dark gray circles with a dashed line represent the internal state
variables, whose content is exchanged within the cells of the hidden layer.
White circles with +, 1 and represent linear operations [14].
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Fig. 4: The scanning cycle in the initial access.

initial access phase. Assuming the ideal case where UE can

reliably detect and decode the synchronization signal in the

first scanning cycle, the synchronization delay of data-driven

approach and the random starting point scheme is compared in

two different scenarios: (1) UE are uniformly distributed over

the angular space (Transmission directions) as illustrated in

Fig. 5 (a) and (2) UE are sparsely distributed over the angular

space (Transmission directions) as illustrated in Fig. 5 (b)

A. Uniformly distributed UE

In this case, the UE are distributed over the transmission

directions uniformly, i.e. there are UE in all sectors as in Fig.

5 (a). Intuitively, both schemes have similar synchronization

delays in terms of accessed UE per scanning cycle as will be

demonstrated in section V.
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Fig. 5: (a) UE are uniformly distributed over the transmission directions.(b)
UE have a sparse distribution over the transmission directions

B. Sparsely distributed UE

In this scenario, the data-driven approach using a RNN

[15] outperforms the random starting point scheme in terms

of the number of accessed UE per scanning cycle during the

initial access phase. This can be demonstrated by the following

scenario:

Suppose that there are eight sectors (transmission directions)

with 16 UE distributed as shown in Fig. 6 and an analog

beamforming is used to scan the angular space during the

initial access phase. In the random starting point, the gNB

starts the sweeping by picking randomly one direction out

of eight possible directions. Then, it could either continue

with the remaining directions using the sequential sweeping

clockwise/anti-clockwise from the randomly selected starting

points or pick randomly from the remaining directions until all

directions are swept. Note that, in the random starting point

scheme the gNB must scan all of the directions i.e. complete

one scanning cycle to access all 16 UE. On the other hand,

in the initial access using a RNN the gNB only scans the

Fig. 6: The UE are sparsely distributed over eight transmission directions.

populated directions relaying on the accurate prediction from

the RNN. Thus, the initial access based on the RNN may

access 16 UE in a fraction of the scanning cycle (in Fig. 6 the

UE can initially access the gNB in half a scanning cycle).

V. RESULTS AND DISCUSSION

In our study, two weeks of Milan CDR data (Nov 04, 2013

to Nov 17, 2013) were used to predict the user distribution

in four sectors between the instants when the CDRs are

measured. A total of 1684 sequences was used to train the

GRU model and 188 to test it. The model was trained with 20

epochs, each with 50 steps. The model takes 28min 55s to train

with the above-mentioned epochs. Fig. 7 depicts the prediction

performance of the GRU model on the tested sequences, which

is the aggregated CDR per direction as a function of time

(every 10 minutes). It can be seen that the prediction is very

close to the ground truth most of the time. Based on the

prediction the pseudo-omni beam can be directed toward the

sector with a maximum number of CDRs. In the case that the

number of CDRs are equal, the gNB chooses the sweeping

order randomly. The GRU is optimized by minimizing the

Mean Square Error as a cost function. Fig. 8 depicts the

gradual decrease of the cost function with the epoch number,

which results in the rapid learning rate of the model. The

performance of RNN beam sweeping and random starting

point in different UE distribution is illustrated in Fig. 9. Note

that both schemes require one scanning cycle in the uniformly

distributed UE scenario, however, the RNN beam sweeping

outperforms the random starting point scheme in the sparsely

distributed UE as it requires approximately 0.2 scanning cycle

on average. Fig. 10 shows the cumulative distribution function

of the scanning cycle when the RNN beam sweeping is applied

on eight sectors (transmission directions). The UE distribution

over the angular space is derived from the call details record

(CDR) of Milan City. Note that the UE can initially assess the

gNB in approximately 0.41 of a complete scanning cycle with

probability 0.9. As mentioned in section IV-B, the random
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Fig. 7: CDRs prediction and ground truth for four sectors (a) Sector A,(b)
sector B, (c) sector C and (d) sector D.

starting point beam sweeping covers the angular space by

performing a complete scanning cycle. Thus, the RNN beam

sweeping scheme converge faster than the random starting

point approach.

VI. CONCLUSION

Data-driven beam sweeping (hopping) patterns have been

introduced in this paper. It is shown that as GRU neural

network can predict the CDRs with high accuracy, which is

Fig. 8: Convergence of GRU training model calculated based on Mean Square
Error cost function.

Fig. 9: Average scanning cycle in different UE distribution.

used to adjust the sweeping pattern in the angular domain.

Although, the pseudo-omni was considered due to the lack

of exact user location in the gNB coverage, sweeping with

narrow beam can be done if the data reveals more information

about the locations. The data-driven beam sweeping was

demonstrated to significantly reduce the scanning cycle during

the initial access with respect to a random starting point in

sparsely distributed UE scenario. Future research directions

are to quantify the access delay of the data-driven sweeping

order using the GRU neural network and compare it with

a random starting point sweeping considering the detection

of the synchronization signals. When narrow beams are used

to transmit, the synchronization signals they have a higher

beamforming gain than pseudo-omni beams and facilitate the

selection of the best beam pair between the gNB and UE

during the cell search.



Fig. 10: The CDF of the scanning cycle of RNN based beam sweeping.
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